



# ИНФОРМАЦИОННО-УПРАВЛЯЮЩАЯ СИСТЕМА «ЭКСПОРТ/ИМПОРТ ЭЛЕКТРОЭНЕРГИИ В ЗАРУБЕЖНЫЕ ЭНЕРГОСИСТЕМЫ - 24»

# ИНСТРУКЦИЯ ПО УСТАНОВКЕ И НАСТРОЙКЕ

ВЕРСИЯ 1.2.6

РЕДАКЦИЯ 1.2.6 ОТ 06.02.2025





Содержание

| 1. OCHOI | ВНЫЕ ПОНЯТИЯ, ОПРЕДЕЛЕНИЯ И СОКРАЩЕНИЯ      | 3  |
|----------|---------------------------------------------|----|
| 2. HA3HA | чение руководства                           | 5  |
| 3. ТРЕБО | ВАНИЯ К ПРОГРАММНЫМ/АППАРАТНЫМ РЕСУРСАМ     | 5  |
| 3.1.     | Требования к аппаратному обеспечению.       | 5  |
| 3.2.     | Требования к программному обеспечению       | 5  |
| 3.3.     | Предварительная настройка окружения         | 6  |
| 4. УСТАН | ЮВКА КОМПОНЕНТОВ СИСТЕМЫ                    | 10 |
| 4.1.     | Установка и настройка серверов SERVER24-арр | 10 |
| 4.1.1.   | Загрузка конфигурации                       | 10 |
| 4.1.2.   | Настройка шаблона переменных                | 10 |
| 4.1.3.   | Загрузка корневых сертификатов СО ЕЭС       | 13 |
| 4.1.4.   | Установка Наргоху                           | 13 |
| 4.1.5.   | Настройка НАРгоху                           | 13 |
| 4.2.     | Установка keepalived                        | 15 |
| 4.2.1.   | Настройка keepalived                        | 15 |
| 4.2.2.   | Настройка Docker-engine                     | 17 |
| 4.3.     | Запуск контейнера                           | 18 |
| 4.4.     | Установка и настройка серверов SERVER24-Web | 19 |
| 4.4.1.   | Установка nginx                             | 19 |
| 4.4.2.   | Настройка nginx                             | 19 |
| 4.4.3.   | Настройка Nginx                             | 21 |
| 5. УСТАН | ЮВКА И НАСТРОЙКА СЕРВЕРОВ SERVER24-DB       | 22 |
| 5.1.     | Список используемых переменных              | 22 |
| 5.2.     | Установка и настройка СУБД                  | 24 |
| 5.2.1.   | Установка сервиса etcd                      | 24 |
| 5.2.2.   | Настройка Etcd                              | 24 |
| 5.2.3.   | Установка СУБД                              | 26 |
| 5.2.4.   | Установка Patroni                           | 26 |
| 5.2.5.   | Настройка Patroni                           | 28 |
| 5.2.6.   | Настройка СУБД                              | 31 |
| 5.2.7.   | Настройка резервного копирования СУБД       | 32 |
| 6. ПЕРЕД | АЧА ДАННЫХ ГРУППЕ КТО                       | 34 |
| 7. ЛИСТ  | РЕГИСТРАЦИИ ИЗМЕНЕНИЙ                       | 34 |





# 1. ОСНОВНЫЕ ПОНЯТИЯ, ОПРЕДЕЛЕНИЯ И СОКРАЩЕНИЯ

| CPU         | Центральный процессор                                     |  |  |
|-------------|-----------------------------------------------------------|--|--|
|             | Система, которая переводит доменные имена в ІР-адреса,    |  |  |
| DNS         | позволяя пользователям использовать понятные имена д      |  |  |
|             | доступа к веб-сайтам.                                     |  |  |
|             | Платформа для разработки, доставки и запуска приложений   |  |  |
| Docker      | в контейнерах, что обеспечивает изоляцию и портативность  |  |  |
|             | приложений.                                               |  |  |
|             | Распределенный, высоко доступный хранилище ключ-          |  |  |
| etcd        | значение, часто используемое для хранения                 |  |  |
|             | конфигурационных данных и метаданных.                     |  |  |
| Frontend    | Часть приложения, которая взаимодействует с               |  |  |
| Frontena    | пользователем и отображает данные, полученные от backend. |  |  |
|             | Высокопроизводительный ТСР/НТТР балансировщик             |  |  |
| II A Dwarer | нагрузки, который распределяет трафик между несколькими   |  |  |
| HAProxy     | серверами для обеспечения высокой доступности и           |  |  |
|             | отказоустойчивости.                                       |  |  |
| HDD         | Устройство хранения информации, дисковый накопитель       |  |  |
| HTTPS       | Расширение протокола НТТР для поддержки шифрования в      |  |  |
| mins        | целях повышения безопасности.                             |  |  |
| IP          | уникальный числовой идентификатор устройства в            |  |  |
|             | компьютерной сети.                                        |  |  |
|             | Инструмент для обеспечения высокой доступности (НА) на    |  |  |
| Keepalived  | уровне сети, который обычно используется в паре с HAProxy |  |  |
|             | или Nginx для обеспечения отказоустойчивости.             |  |  |
|             | Репозиторий менеджер, используемый для хранения и         |  |  |
| Nexus       | управления артефактами, такими как библиотеки и пакеты    |  |  |
|             | используемые в процессе разработки ПО.                    |  |  |
|             | Веб-сервер и обратный прокси-сервер, часто используемый   |  |  |
| Nginx       | для балансировки нагрузки, кэширования и в качестве веб-  |  |  |
|             | сервера для обслуживания статического контента.           |  |  |
| RAM         | Оперативная память.                                       |  |  |
| SMB         | Протокол обмена сетевыми файлами.                         |  |  |





| CNATED     | Сетевой протокол, предназначенный для передачи          |  |  |
|------------|---------------------------------------------------------|--|--|
| SMTP       | электронной почты в сетях ТСР/ІР.                       |  |  |
| CCII       | Защищённый сетевой протокол для удалённого управления   |  |  |
| SSH        | сервером через интернет.                                |  |  |
|            | Технология, обеспечивающая зашифрованное соединение     |  |  |
| SSL        | между веб-сервером и браузером для защиты передаваемых  |  |  |
|            | данных.                                                 |  |  |
| TCD        | Протокол сети интернет, который позволяет двум хостам   |  |  |
| TCP        | создать соединение и обмениваться потоками данных.      |  |  |
|            | Сетевой протокол транспортного уровня, используемый для |  |  |
| LIDD       | установления соединений с низкой задержкой и            |  |  |
| UDP        | устойчивостью к потерям между приложениями в режиме     |  |  |
|            | онлайн                                                  |  |  |
|            | Сетевой протокол, предназначенный для увеличения        |  |  |
| VRRP       | доступности маршрутизаторов, выполняющих роль шлюза     |  |  |
|            | по умолчанию.                                           |  |  |
| БД         | Система для хранения и управления данными               |  |  |
|            | Программная эмуляция компьютера, которая выполняет      |  |  |
| BM         | операционные системы и приложения как на физическом     |  |  |
|            | компьютере.                                             |  |  |
|            | Комплекс программных и аппаратных средств для           |  |  |
| ПАК ЕСМ    | мониторинга и управления различными системами и         |  |  |
|            | сервисами.                                              |  |  |
| ПО         | Программное обеспечение                                 |  |  |
| Сервер     | Доменная служба Active Directory – службы каталогов     |  |  |
| AD         | корпорации Microsoft для операционных систем семейства  |  |  |
| AD         | Windows Server                                          |  |  |
| СУБД       | Система управления базами данных                        |  |  |
|            | Программное обеспечение для создания, управления и      |  |  |
| СУБД       | манипулирования базами данных, обеспечивающее           |  |  |
|            | безопасность и целостность данных.                      |  |  |
|            | Индивидуальная учетная запись пользователя в системе,   |  |  |
| <b>У</b> 3 | включающая логин и пароль для аутентификации и          |  |  |
|            | авторизации.                                            |  |  |



#### 2. НАЗНАЧЕНИЕ РУКОВОДСТВА

Инструкция описывает действия администратора по установке и настройке ИУС «ИСЭИ-24» (далее по тексту – Система).

Перечисленные в инструкции команды выполняются с использованием SSH-клиента, например – PuTTY.

#### 3. ТРЕБОВАНИЯ К ПРОГРАММНЫМ/АППАРАТНЫМ РЕСУРСАМ

Для установки Системы необходимо подготовить сервера с операционной системой Astra Linux Special Edition в соответствии с данными, указанными в этой главе.

#### 3.1. Требования к аппаратному обеспечению.

Рекомендованные характеристики серверов указаны в Таблице 1.

Таблица 1 – Рекомендуемая конфигурация серверов Системы

| Тип сервера | Кол-во | Характеристики сервера |     |      |
|-------------|--------|------------------------|-----|------|
|             |        | vCPU                   | RAM | HDD  |
|             |        | core                   | Gb  | Gb   |
| server-web  | 2      | 4                      | 8   | 72   |
| server-app  | 2      | 6                      | 8   | 65   |
| server-db   | 3      | 8                      | 8   | 320  |
| ИТОГО       | 7      | 44                     | 56  | 1234 |

Характеристики сервера соответствуют одному серверу. В строке «ИТОГО» указана итоговая сумма ресурсов для всех серверов.

# 3.2. Требования к программному обеспечению

- 1. На серверах **SERVER-web** должно быть установлено следующее ПО:
  - Операционная система Astra Linux Special Edition 1.7 (Орёл);
  - Nginx версии 1.22.1+.



- 2. На серверах **SERVER-арр** должно быть установлено следующее ПО:
  - Операционная система Astra Linux Special Edition 1.7 (Орёл);
  - НАРгоху версии 2.х.
  - ПО Keepalived (версия 2.2.7).
  - Docker 24.0.x.
- 3. На серверах **SERVER-db** должно быть установлено следующее ПО:
  - Операционная система Astra Linux Special Edition 1.7 (Орёл);
  - СУБД Postgres SQL Pro 16 STD;
  - ΠΟ Patroni 2.1.12+;
  - Etcd 3.5.1+.

#### 3.3. Предварительная настройка окружения

Для запуска Системы необходимо:

1. Запросить сертификат в формате pfx для обеспечения шифрованного соединения с пользовательским сайтом: server.so-ups.ru.

Необходимо произвести конвертацию сертификата в PEM формат. Для конвертации рекомендуется использовать библиотеку openssl, документация для ПО доступна по ссылке: https://www.openssl.org/docs/manmaster/man1/openssl.html

# Пример конвертации сертификата с именем server.pfx:

sudo openssl pkcs12 -in ~/server.pfx -clcerts -nokeys -out /etc/nginx/ssl/server.crt sudo openssl pkcs12 ~/server.pfx -in -nocerts -out ~/server.key ~/server.key sudo openssl rsa -in -out /etc/nginx/ssl/server.key

- 2. Запросить УЗ для доступа к ФПА.
- 3. Запросить УЗ для доступа к артефактам в Nexus.
- 4. В AD необходимо запросить создание системной учетной записи Server, например, domain\server, и соответствующий ей почтовый ящик, например server@comm.





- 5. Предоставить системной УЗ права на чтение параметров из ОИК СК-11 через REST API.
- 6. Для настройки подключения к пользовательскому веб-сайту из интернета по URL https://full\_domain\_name, где full\_domain\_name полное доменное имя для пользовательского сайта, необходимо в DNS создать Aliases c full\_domain\_name, например server.so-ups.ru. После чего привязать к созданному Aliases полное доменное имя сервера WAF.
- 7. Для сервера SERVER-Web (в ДМЗ) создать в DNS внешние (белые) ір-адреса для обеспечения подключения от WAF к серверу SERVER-Web.
- 8. Также необходимо зарезервировать общий ір-адрес, по которому будет доступен кластер БД.
- 9. Для настройки системы необходимо на серверах Linux создать учетную запись пользователя "user" и добавить данного пользователя в группу sudo. Все дальнейшие настройки будут описаны для УЗ с именем "user".

Таблица 2 содержит список сетевых взаимодействий Системы.

Таблица 2 – Сетевое взаимодействий Системы

| Источник                 | Приёмник                                | Протокол/Порт     |  |  |  |
|--------------------------|-----------------------------------------|-------------------|--|--|--|
| Серво                    | Сервера приложений Системы (SERVER-app) |                   |  |  |  |
| Компьютер администратора | Сервера приложений                      | TCP-port(SSH)     |  |  |  |
| Системы                  | (Linux)                                 | TCP- port         |  |  |  |
| Сервер ПАК ЕСМ           | Сервера приложений                      | TCP- port         |  |  |  |
|                          | (Linux)                                 | UDP- port         |  |  |  |
| Сервера приложений       | Сервер ПАК ЕСМ                          | UDP- port         |  |  |  |
| (Linux)                  |                                         |                   |  |  |  |
| Сервера приложений       | Сервера СУБД Системы                    | TCP- port         |  |  |  |
| (Linux)                  |                                         | TCP- port         |  |  |  |
| Сервера приложений       | Сервер AD                               | TCP- port (LDAPS) |  |  |  |
| (Linux)                  | (контроллер домена)                     |                   |  |  |  |
| Сервера приложений       | Сервер ФПА – хранилище                  | TCP- port (HTTPS) |  |  |  |
| (Linux)                  | конфигурации                            |                   |  |  |  |
|                          | (server)                                |                   |  |  |  |





| Сервера приложений     | Сервер ФПА – хранилище    | TCP- port (HTTPS)  |
|------------------------|---------------------------|--------------------|
| (Linux)                | артефактов                | TCP- port          |
|                        | (server)                  | 1                  |
| Сервера приложений     | Почтовый сервер           | TCP- port (IMAPS), |
| (Linux)                |                           | TCP- port (SMTP)   |
| Сервера приложений     | Public API ОИК СК-11      | TCP- port (HTTPS)  |
| (Linux)                |                           | TCP- port (HTTPS)  |
| Сервера приложений     | Сервер CLUBR              | TCP- port          |
| (Linux)                | server                    | TCP- port          |
|                        |                           | UDP- port          |
|                        |                           | UDP- port          |
| Сервера приложений     | Сервер точного времени    | UDP- port          |
| (Linux)                |                           |                    |
| ,                      | Web-сервера Системы (SERV | (ER-web)           |
| Компьютер              | Web-сервера Системы       | TCP- port (SSH)    |
| администратора Системы |                           | TCP- port (HTTPS)  |
| Пользователи Системы   | Web-сервера Системы       | TCP- port (HTTPS)  |
| Сервер ПАК ЕСМ         | Web-сервера Системы -     | TCP- port (HTTPS), |
|                        | локальная инсталляция     | UPD- port          |
| Web-сервера Системы    | Сервера приложений        | TCP- port          |
|                        | (Linux) - локальная       | UDP- port          |
|                        | инсталляция               |                    |
| Web-сервера Системы    | Web-сервера Системы       | VRRP               |
| Web-сервера Системы    | Сервер ФПА – хранилище    | TCP- port (HTTPS)  |
|                        | артефактов                | TCP- port          |
|                        | (server)                  |                    |
| Web-сервера Системы    | Сервер точного времени    | UDP- port          |
|                        | Сервер СУБД Системы (SER  |                    |
| Компьютер              | Сервера СУБД Системы      | TCP- port (SSH)    |
| администратора Системы |                           | TCP- port          |
|                        |                           | TCP- port ,        |
|                        |                           | TCP- port,         |
|                        |                           | TCP- port,         |
|                        |                           | TCP- port,         |
|                        | G GIFF G                  | TCP- port ,        |
| Сервера приложений     | Сервера СУБД Системы      | TCP- port,         |
| (Linux)                |                           | TCP- port,         |
|                        |                           | TCP- port,         |
|                        |                           | TCP- port,         |
|                        |                           | TCP- port,         |
| C CVITT C              | C CVET C                  | TCP- port ,        |
| Сервера СУБД Системы   | Сервера СУБД Системы      | TCP- port,         |
|                        |                           | TCP- port,         |
|                        |                           | TCP- port ,        |





|  | TCP- port , |
|--|-------------|
|  | TCP- port , |
|  | TCP- port , |





#### 4. УСТАНОВКА КОМПОНЕНТОВ СИСТЕМЫ

Предварительная настройка серверов Системы.

Для интеграции с ПАК ECM необходимо установить пакет snmpd, используя команду:

sudo apt update && sudo apt install snmpd

#### 4.1. Установка и настройка серверов SERVER24-арр

#### 4.1.1. Загрузка конфигурации

Для удобства работы все необходимые для запуска Системы скрипты размещены в git репозитории ФПА.

Считывание данных из файлов конфигурации производится при запуске сервиса.

Для изменения конфигурации необходимо внести изменения в конфигурационные файлы и произвести перезапуск сервисов.

Для настройки сервисов необходимо подключиться к каждому серверу приложений по SSH и выполнять следующую последовательность действий:

```
git clone <a href="https://server.comm/server24/config.git-b">https://server.comm/server24/config.git-b</a> main ^{\sim}/config git checkout main
```

На запрос авторизации необходимо ввести данные УЗ, имеющей доступ к репозиторию проекта в ФПА.

Перейти в директорию с шаблоном запуска:

cd ~/config/ и используя в качестве шаблона файл: ~/config/.env.example создать новый файл: ~/config/.env используя команду:

```
cp ~/config/.env.example ~/config/.env
```

Заполнить параметры используя информацию из следующего раздела

# 4.1.2. Настройка шаблона переменных

Таблица 3 содержит описание переменных, используемых в шаблоне файла .env. В шаблоне файла некоторые переменные закомментированы, то есть содержат в начале строки символ #. Такие переменные являются необязательными и их изменение пользователем не подразумевается.

Таблица 3 – Список переменных файла .env





| Переменные                       | Комментарий                                                            | Пример                                      |
|----------------------------------|------------------------------------------------------------------------|---------------------------------------------|
| DB_HOST                          | Общий IP адрес, выделенный для БД                                      | ip                                          |
| DB_PORT                          | Порт БД                                                                | port                                        |
| DB_NAME                          | Имя БД                                                                 | Server-db                                   |
| DB_USER                          | Имя пользователя БД                                                    | Server_user                                 |
| DB_PASSWORD                      | Пароль пользователя БД                                                 | password                                    |
| HIKARI_MAX_LIFETIME              | Таймаут максимального времени сессии с БД                              | 39000                                       |
| TEMP_DIR                         | Путь к временной папке системы                                         | /temp                                       |
| MAIL_HOST                        | Хост почтового сервера                                                 | server                                      |
| MAIL_PORT                        | Порт почтового сервера                                                 | port                                        |
| MAIL_USE_SSL                     | Включение\отключение SSL                                               | True                                        |
| MAIL_SSL_SOCKET_FAC<br>TORY_PORT | Порт, к которому можно подключиться при использовании фабрики сокетов. | port                                        |
| MAIL_USER                        | Имя пользователя от почтового ящика                                    | name@comm                                   |
| MAIL_PASSWORD                    | Пароль пользователя                                                    | password                                    |
| MAIL_FROM_TITLE                  | Почта для отправки<br>уведомлений                                      | name@comm                                   |
| SERVER_URL                       | Адрес сервера системы в<br>ссылках почтовых сообщений                  | https://ссылка                              |
| SK11_LOGIN                       | Логин пользователя СК-11                                               | login                                       |
| SK11_PASSWORD                    | Пароль пользователя СК-11                                              | password                                    |
| SK11_HOSTS                       | список хостов для работы с<br>ОИК СК-11 через запятую без<br>пробелов  | https://server:port,<br>https://server:port |
| SMB_DOMAIN                       | Домен учётной записи SMB для работы с Clubr                            | ldaps://ad.comm                             |
| SMB_USERNAME                     | Логин учётной записи SMB для работы с Clubr                            | login                                       |
| SMB_PASSWORD                     | Пароль учётной записи SMB для работы с Clubr                           | password                                    |





| ESM_ADDRESSES                        | Адреса серверов ЕСМ, принимающих SNMP Trap,                                           | ip:port, ip:port  |
|--------------------------------------|---------------------------------------------------------------------------------------|-------------------|
| ESM_COMMUNITY                        | SNMP Community                                                                        | public            |
| ESM_ENTERPRISES                      | SNMP префикс НТЦ ЕЭС ИК                                                               | ENTERPRISES       |
| ESM_SYSTEM_OID                       | SNMР идентификатор системы ИСЭИ24 НТЦ ЕЭС ИК                                          | oid               |
| ESM_TRAP_MESSAGE_I<br>NTERVAL_IN_MIN | Переменная, определяющая минимальный интервал отправки повторных SNMP Trap. В минутах | 5                 |
| ESM_SOURCE_IP                        | Адрес сервера, источника трапа, для ECM                                               | ip                |
| ESM_SOURCE_HOSTNA<br>ME              | Имя сервера, источника трапа, для ECM                                                 | server-app-p.comm |

Для удобства изменения переменные представлены в формате .env файла с объявленными переменными:

#### <винечание>=<вии>

Пример работы с переменной SERVER\_URL при условии того, что адрес основного сервера приложений (Linux) - https://server.so-ups.ru:

Переменная в шаблоне конфигурации:

```
SERVER_URL=http://${ SERVER_URL:-https://server.so-ups.ru
}
```

Переменная после присвоения значения:

```
SERVER URL=https://server.comm
```

При использовании значений, содержащих технические символы (`~!@#\$%^\*()\_-"[]{}:;' $\$ ), значение переменной обрамляется одинарными кавычками.

Считывание данных из файлов конфигурации производится при запуске сервиса.



#### 4.1.3. Загрузка корневых сертификатов СО ЕЭС

Для корректной работы с https в Систему необходимо загрузить корневые сертификаты СО ЕЭС.

Для этого необходимо загрузить корневые сертификат из удостоверяющего центра СО ЕЭС и скопировать их в папку ~/config/ssl.

При запуске Системы сертификаты будут помещены внутрь докер контейнера и доступны Системе.

#### 4.1.4. Установка Наргоху

Для установки haproxy необходимо подключиться к каждой BM server-app по SSH и выполнить следующую последовательность действий:

```
sudo apt install haproxy -y
sudo systemctl enable haproxy
```

### 4.1.5. Настройка НАРгоху

1. Настроить конфигурационный файлы НАРгоху, через команду:

```
nano /etc/haproxy/haproxy.cfg
```

Содержание конфигурационного файла должно быть следующим:

```
global
    maxconn 100
defaults
    log global
    mode tcp
    retries 2
    timeout client 30m
    timeout connect 4s
    timeout server 30m
    timeout check 5s
listen stats
    mode http
    bind *:port
    stats enable
    stats uri /
listen postgres
    bind *:port
```

option httpchk





```
http-check expect status 200
         default-server inter 3s fall 3 rise 2 on-marked-down
shutdown-sessions
         server node1 < IP NODE1>:port maxconn 100 check port
port
         server node2 <IP NODE2>:port maxconn 100 check port port
         server node3 <IP NODE3>:port maxconn 100 check port port
   где:
     port – порт статистики для haproxy;
     port – порт для подключения к кластеру БД PostgreSQL ИУС ИСЭИ-24;
     \langle IP \, NODE\{1,2,3\} \rangle – ip-адреса всех трех узлов серверов БД;
     port – порт подключения к PostgreSQL;
     port – порт restapi patroni.
   Пример:
     global
         maxconn 100
     defaults
         log global
         mode tcp
         retries 2
         timeout client 30m
         timeout connect 4s
         timeout server 30m
         timeout check 5s
     listen stats
         mode http
         bind *:port
         stats enable
         stats uri /
     listen postgres
         bind *:port
         option httpchk
         http-check expect status 200
         default-server inter 3s fall 3 rise 2 on-marked-down
shutdown-sessions
         server nodel ip:port maxconn 100 check port port
         server node2 ip:port maxconn 100 check port port
         server node3 ip:port maxconn 100 check port port
   2. Перезагрузить НАРгоху:
```



service haproxy restart

#### 3. Проверить корректность работы сервиса НАРгоху:

```
service haproxy status
```

Статус сервиса должен соответствовать active (running).

#### 4.2. Установка keepalived

ПО keepalived необходимо для организации отказоустойчивого кластера. Для установки keepalived необходимо подключиться к каждой BM server24-app по SSH и выполнить следующую последовательность действий:

```
sudo su
apt-get update
apt-get install keepalived -y
echo net.ipv4.ip_forward=1 >> /etc/sysctl.conf
sysctl -p
touch /etc/keepalived/keepalived.conf
```

Далее необходимо создать исполняемый файл /etc/keepalived/ chk\_haproxy.sh с содержимым:

```
#!/bin/bash
ha_code=$(curl --noproxy \* -m 3 -s -o /dev/null -w
%{http_code} http://localhost:port)
ha_status=$(curl --noproxy \* -m 3 -s
http://localhost:port/\;csv | grep "postgres,BACKEND" |
cut -d, -f18 )
if [[ $ha_code -eq 200 && $ha_status == UP ]]
then
    exit 0
else
    exit 1
fi
```

Так же необходимо добавить сервис в автозагрузку командой:

```
systemctl enable keepalived
```

# 4.2.1. Настройка keepalived

Для завершения конфигурации keepalived необходимо отредактировать конфигурационный файл командой sudo nano /etc/keepalived/keepalived.conf, добавив в него нижеприведенную





конфигурацию и изменить значение priority в зависимости от роли сервера (основной/резервный).

Переменную  $\langle IP \rangle$  необходимо заменить на ір адрес, выделенный для работы сервиса, запрошенный в <u>п. 3.3</u>.

```
lobal defs {
     script user root
    enable script security
    vrrp script chk haproxy {
         script "ps -C chk_haproxy
        interval 2
    vrrp instance SERVER APP {
     state MASTER #BACKUP Для основного узла MASTER для
резервного ВАСКИР
     interface eth0 #Указываем интерфейс, к которому будет
привязан VRRP instance
    virtual router id id #Уникальное значение кластера
     #Должен быть одинаков на всех хостах в instance
     #допустимые значения от 1 до 255.
    priority id #Для основного узла указываем 110 для резервного
100.
    advert int 4
     #Настройка аутентификации по паролю
     authentication {
     auth type possword
     auth pass 0000
     #Настройка виртуального сетевого интерфейса
    virtual ipaddress {
           <IP> dev eth0 label eth0:vip
     }
     track script {
       chk haproxy
     }
```

После чего необходимо перезапустить сервис командой:

```
systemctl restart keepalived
```

Установка и настройка keepalived закончена для проверки установки необходимо выполнить команду:

```
systemctl status keepalived
```





Статус сервиса должен соответствовать active (running).

Для основного сервера в выводе должно содержаться сообщение:

```
VRRP Instance (SERVER APP) Entering MASTER STATE
```

Для резервного сервера в выводе должно содержаться сообщение:

```
VRRP Instance (SERVER APP) Entering BACKUP STATE
```

## 4.2.2. Hастройка Docker-engine

Для настройки Docker-engine на серверах приложений необходимо выполнить последовательно следующие команды:

1. Переходим в консоль root для повышения привилегий:

```
sudo su
```

2. Обновляем список доступных пакетов и устанавливаем необходимые:

```
apt-get update
apt-get install -y git curl unzip
```

3. Загружаем установочный пакет из ФПА:

```
curl -L https://asdu-fpa-
nexus.comm/repository/ASDU_Distributivs/docker/docker.zip -o
~/docker.zip
    cd ~/
    unzip ~/docker.zip
    cd ~/docker
```

4. Устанавливаем Docker engine:

```
dpkg -i ./*deb
```

5. Устанавливаем docker compose:

```
cp ./docker-compose /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose
exit
```

- 6. Далее добавляем в конфигурацию докера настройки сети, чтобы исключить использование подсетей, занятых во внутренних сетях
  - СО. Создаем файл конфигурации используя команду:

```
sudo nano /etc/docker/daemon.json
и добавляем туда следующую конфигурацию:
{
    "live-restore": true,
    "bip": "ip/00",
```





```
"default-address-pools": [{
          "base": "ip/00",
          "size": 24
}]
```

7. Производим запуск Docker-engine:

sudo systemctl start docker

- Включаем Docker-engine в автозагрузку:

sudo systemctl enable docker

- Включаем пользователя в группу docker для запуска контейнеров:

sudo usermod -aG docker user

8. Установка docker-engine закончена. Для проверки установки необходимо выполнить команду:

```
systemctl status docker | grep active
```

9. Ожидаемый ответ:

```
Active: active (running)
```

#### 4.3. Запуск контейнера

- 1. Загрузите папку с конфигурационными файлами
- 2. Авторизуйтесь в Nexus:

```
docker login asdu-fpa-nexus.comm
```

3. Загрузите Docker-образ с Nexus:

```
docker pull server:port/server/server-app:port
```

4. Запустите Docker-контейнер:

Для запуска Docker-контейнера достаточно запустить скрипт установки:

```
# Переходим в каталог проекта cd ./config # Запуск скрипта установки ./start.sh
```

Данный скрипт проверит уже установленные сервисы, и установит свежие версии приложений.

Чтобы убедиться в отсутствии ошибок, необходимо через несколько минут после завершения установки выполнить команду: docker ps



#### 4.4. Установка и настройка серверов SERVER24-Web

#### 4.4.1. Установка nginx

1. Для установки nginx необходимо подключиться к каждой BM server24-web по SSH и выполнить следующую последовательность действий:

```
sudo apt install nginx -y
```

2. Добавить сервис nginx в автозапуск и запустить сервис:

```
sudo systemctl start nginx
sudo systemctl enable nginx
```

#### 4.4.2. Настройка nginx

Для настройки nginx необходимо подключиться к каждой BM server24web по SSH и выполнить следующую последовательность действий:

1. Удалить автоматически созданный файл конфигурации nginx:

```
rm /etc/nginx/sites-available/default
```

2. Очистить директорию www командой:

```
rm -r /var/www/*
```

3. Создать директорию веб сайта:

```
mkdir /var/www/server
```

4. Предоставить права УЗ user, в группу которого будут входить все DevOps-инженеры, на директорию с web-приложением server, используя команду:

```
sudo chown -R user:to-users /var/www
```

5. Заполнить настройки взаимодействия с сервисами по шаблону ниже, используя команду:

```
sudo nano /etc/nginx/conf.d/upstream.conf
```

#### Шаблон:

```
upstream server-service {
    server server-backend ip1:port;
    server server-backend ip2:port;
}
```

6. Заполнить конфигфайл веб-сайта по шаблону ниже, используя команду:

```
sudo nano /etc/nginx/conf.d/front.conf
```





```
Шаблон:
```

```
server {
   listen port;
   server name server.so-ups.ru; if ($request method !~
 ^(GET|HEAD|POST|PUT|DELETE|OPTIONS|PATCH)$) {
      return port; }
  return port https://$host$request uri;
  }
  # Добавление SSL конфигурации
  server {
   listen port ssl;
   server name server.comm;
   ssl certificate /etc/nginx/ssl/http-server.pem;
   ssl_certificate_key /etc/nginx/ssl/http-server.key;
   ssl protocols TLSv1 TLSv1.1 TLSv1.2 TLSv1.3;
   ssl prefer server ciphers on;
   client max body size 50M;
   large client header buffers 8 64k;
           /var/www/server ;
   root
   location / {
      try files $uri $uri/ /index.html =404;
    }
   location /server-service/ {
      proxy set header Host $host;
     proxy_set_header X-Forwarded-For
  $proxy add x forwarded for;
      proxy set header X-Real-IP $remote_addr;
      proxy pass ссылка;
      proxy connect timeout 5s;
   }
}
  7. Убедимся,
               что конфигурация nginx настроена
    командой:
```

правильно

nginx -T

8. Перезапустим сервис nginx:

systemctl restart nginx





9. Установка и настройка web серверов закончена. Для проверки работоспособности Nginx необходимо выполнить команду:

```
systemctl status nginx | grep active 
Ожидаемый ответ:
Active: active (running)
```

### **4.4.3.** Настройка Nginx

Для настройки Web серверов необходимо на каждой BM server24-web скачать артефакт frontend сервиса с ФПА. При помощи команды:

```
curl -u "username:password" -L "https://server/repository/server/server-front-1.2.6.tar.gz" -o ~/server-front.tar.gz"
```

Где username:password это логин и пароль пользователя выполняющего установку в Active Directory Системного оператора.

1. Разархивировать артефакт

```
tar -xvf ~/server-front.tar.gz
```

2. Очистить директорию web сайта командой

```
rm -r /var/www/server/*
```

3. Переместить файлы сервиса в директорию веб сайта командой:

```
cp -r ./front/build/* /var/www/server/*
```

4. Удалить временные файлы сервиса:

```
rm -rf ./front
```

(необходимо заменить «./» на путь к разархивированному артефакту)

5. После чего необходимо загрузить на каждую BM server24-web SSL сертификаты полученные в <u>п. 3.3</u> в каталог /etc/nginx/ssl/, расположенный на Web серверах Системы (рекомендуется использовать ПО WinSCP1).

Для проверки работоспособности веб сайта необходимо перейти по веб ссылке, соответствующей имени сайта, которое мы зарегистрировали в п. 3.3. Ожидаемый результат – отображение страницы авторизации системы.

[Инструкция по установке и настройке]





# 5. УСТАНОВКА И НАСТРОЙКА СЕРВЕРОВ SERVER24-DB

# 5.1. Список используемых переменных

В <u>таблице</u> представлены переменные, используемые для настройки  $\Pi O$  в  $\pi$ . 5

Таблица 4 – Список переменных

| Переменные      | Пример                     | Комментарий                                                                                                   |
|-----------------|----------------------------|---------------------------------------------------------------------------------------------------------------|
| scope           | pgsql_server               | Название области (scope) для Patroni, должно быть одинаковым на всех узлах кластера для                       |
|                 |                            | согласованности.                                                                                              |
| namespace       | /cluster_server/           | Пространство имен для<br>Patroni, должно быть<br>одинаковым на всех узлах<br>кластера для<br>согласованности. |
| name            | postgres3                  | Имя узла в кластере, должно быть уникальным для каждого узла.                                                 |
| listen          | ip:port                    | IP-адрес и порт, на которых REST API будет слушать запросы на данном узле.                                    |
| connect_address | ip:8008                    | IP-адрес и порт, по которым другие узлы будут подключаться к REST API данного узла.                           |
| hosts           | ip1:port,ip2:port,ip3:port | Список IP-адресов и портов всех узлов кластера etcd, используемых Patroni для координации.                    |
| username        | patroni                    | Имя пользователя для подключения к etcd.                                                                      |
| sqlnode         | ip1/00                     | IP-адрес первой ноды, используемый в конфигурации pg_hba.conf для разрешения репликации.                      |
| sqlnode         | ip2/00                     | IP-адрес второй ноды, используемый в конфигурации pg_hba.conf для разрешения репликации.                      |
| sqlnode         | ip3/00                     | IP-адрес третьей ноды, используемый в конфигурации pg hba.conf                                                |





|                              |                       | для разрешения              |
|------------------------------|-----------------------|-----------------------------|
|                              |                       | репликации.                 |
| password                     | народи                | Пароль для пользователя     |
| password                     | пароль                | admin в Patroni, необходимо |
|                              |                       |                             |
|                              |                       | придумать и задать          |
| 1:242                        | :                     | уникальный пароль.          |
| listen                       | ip:port               | IP-адрес и порт, на которых |
|                              |                       | PostgreSQL будет слушать    |
| sourcet odduces              | :                     | запросы на данном узле.     |
| connect_address              | ip:port               | ІР-адрес и порт, по         |
|                              |                       | которым другие узлы будут   |
|                              |                       | подключаться к PostgreSQL   |
| 1 / 1'                       | /1 / / ·              | данного узла.               |
| data_dir                     | /data/patroni         | Директория для хранения     |
|                              |                       | данных PostgreSQL, должна   |
|                              |                       | быть создана ранее и иметь  |
| 1. 1.                        | / // / / 1.1.4.6.1.   | нужные права доступа.       |
| bin_dir                      | /opt/pgpro/std-16/bin | Путь к директории с         |
|                              |                       | исполняемыми файлами        |
|                              |                       | PostgreSQL.                 |
| pgpass                       | /tmp/pgpass           | Путь к файлу pgpass для     |
|                              |                       | аутентификации              |
|                              |                       | PostgreSQL.                 |
| username                     | postgres              | Имя пользователя для        |
| (authentication.replication) |                       | репликации PostgreSQL.      |
| password                     | пароль                | Пароль для пользователя     |
| (authentication.replication) |                       | репликации PostgreSQL,      |
|                              |                       | необходимо придумать и      |
|                              |                       | задать уникальный пароль.   |
| username                     | postgres              | Имя суперпользователя       |
| (authentication.superuser)   |                       | PostgreSQL.                 |
| password                     | пароль                | Пароль для                  |
| (authentication.superuser)   |                       | суперпользователя           |
|                              |                       | PostgreSQL, необходимо      |
|                              |                       | придумать и задать          |
|                              |                       | уникальный пароль.          |
| bind (listen stats)          | *:port                | IP-адрес и порт для доступа |
|                              |                       | к статистике HAProxy.       |
| bind (listen postgres)       | *:port                | IP-адрес и порт для доступа |
|                              |                       | к PostgreSQL через          |
|                              |                       | HAProxy.                    |
| node1 IP and port            | ip:port               | IP-адрес и порт для node1 в |
|                              |                       | конфигурации HAProxy.       |
| node2 IP and port            | ip:port               | IP-адрес и порт для node2 в |
|                              |                       | конфигурации HAProxy.       |
| node3 IP and port            | ip:port               | IP-адрес и порт для node3 в |
|                              |                       | конфигурации HAProxy.       |





| check port | 8008 | Порт для проверки     |
|------------|------|-----------------------|
|            |      | состояния серверов в  |
|            |      | конфигурации HAProxy. |

### 5.2. Установка и настройка СУБД

#### **5.2.1.** Установка сервиса etcd

Данный сервис необходим для работы ПО Patroni и выполняет роль хранилища конфигурации и технической информации для PostgreSQL и Patroni. Для установки etcd необходимо подключиться по ssh на каждый узел кластера БД, выделенный для установки СУБД и выполнить следующие команды:

sudo apt-get install etcd

#### **5.2.2.** Настройка Etcd

Для настройки etcd необходимо подключиться по ssh на каждый узел кластера БД, выделенный для установки СУБД и выполнить следующие команды:

1) Настроить конфигурационный файл согласно шаблону (см. ниже), через команду:

nano /etc/default/etcd

Таблица 5 – Список переменных

| Переменная               | Пример                | мер Комментарий      |  |
|--------------------------|-----------------------|----------------------|--|
| ETCD_NAME                | name                  | hostname текущей     |  |
|                          |                       | машины               |  |
| ETCD_LISTEN_PEER_URLS    | http://ip:port        | адрес текущей машины |  |
| ETCD_LISTEN_CLIENT_URLS  | http://ip:port        | адрес текущей машины |  |
| ETCD_INITIAL_ADVERTISE_P | http://ip:port        | адрес текущей машины |  |
| EER_URLS                 |                       |                      |  |
| ETCD_INITIAL_CLUSTER     | name1=http://ip:port, | адреса всех машин в  |  |
|                          | name2=http://ip:port  | кластере etcd        |  |
| ETCD_INITIAL_CLUSTER_STA | New                   | статус текущего      |  |
| TE                       |                       | кластера             |  |
| ETCD_INITIAL_CLUSTER_TOK | etcd-cluster          | токен кластера       |  |
| EN                       |                       |                      |  |
| ETCD_ADVERTISE_CLIENT_U  | http://ip:port        | адрес текущей машины |  |
| RLS                      |                       |                      |  |



#### Пример:

```
[member]
ETCD_NAME=sqlnode1
ETCD_LISTEN_PEER_URLS="http://ip:port"
ETCD_LISTEN_CLIENT_URLS=" http://ip:port"
[cluster]
ETCD_INITIAL_ADVERTISE_PEER_URLS=" http://ip:port"
ETCD_INITIAL_CLUSTER="=sqlnode1= http://ip:port,sqlnode2=
http://ip:port ,sqlnode3= http://ip:port
ETCD_INITIAL_CLUSTER_STATE="new"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_ADVERTISE_CLIENT_URLS=" http://ip:port"
```

### Для проверки корректности установки etcd необходимо выполнить команду:

sudo systemctl status etcd

#### При успешной установке должно появиться сообщение (пример):

```
etcd.service - etcd key-value store Loaded: loaded(/lib/systemd/system/etcd.service; enabled; vendor preset: enabled) Active: active (running) since Tue 2023-07-19 14:21:45 UTC; 1h 23min ago Docs: https://github.com/coreos/etcd Main PID: 1234 (etcd) Tasks: 6 (limit: 4915) Memory: 52.0M CGroup: /system.slice/etcd.service —1234 /usr/local/bin/etcd
```

# Проверить работоспособность кластера (на любом из узлов кластера):

```
sudo etcdctl member list
```

В результате будет показано состояния всех узлов кластера, и указано кто в данный момент является лидером.

#### Пример вывода команды:

```
90b34b35be64721: name=etc1 peerURLs= http://ip:port clientURLs= http://ip:port isLeader=false
19b668c907898b11: name=etc3 peerURLs= http://ip:port clientURLs= http://ip:port isLeader=true
bc5bb71b7803f7fe: name=etc2 peerURLs= http://ip:port clientURLs= http://ip:port isLeader=false
```

# Создаем юнит файл сервиса etcd по шаблону (см. ниже)

sudo cat << EOF > /etc/systemd/system/etcd.service

#### Шаблон:

sudo cat << EOF > /etc/systemd/system/etcd.service





```
[Unit]
Description=etcd key-value store
After=network-online.target
Wants=network-online.target

[Service]
Type=notify
EnvironmentFile=-/etc/default/etcd
User=etcd
Group=etcd
ExecStart=/usr/local/bin/etcd
Restart=always
LimitNOFILE=40000

[Install]
WantedBy=multi-user.target
EOF
```

#### 5.2.3. Установка СУБД

Для установки PostgreSQL необходимо подключиться по ssh на каждый узел кластера БД, выделенный для установки СУБД и выполнить следующие команды:

1. Обновить список пакетов с репозитория:

apt-get update

2. Установить пакет Postgres:

```
wget http://server/std-16/keys/pgpro-repo-add.sh
sudo sh pgpro-repo-add.sh
```

#### Установка

sudo apt-get install postgrespro-std-16

3. Присвоить УЗ postgres пароль командой:

sudo passwd postgres

На запрос системы необходимо дважды ввести пароль.

#### **5.2.4.** Установка Patroni

1. Необходимо подключиться по ssh на каждый узел кластера БД, выделенный для установки СУБД и остановить сервис и отключить postgres на всех узлах кластера баз данных и приложений:

```
sudo systemctl stop postgrespro-std-16
sudo systemctl disable postgrespro-std-16
```





2. Установить patroni на каждом из узлов кластера баз данных и приложений с помощью следующих команд:

```
#Устанавливаем Python

sudo apt-get update
sudo apt-get install python3-pip python3-dev python3-
requests postgrespro-std-16-dev postgrespro-std-16-libs -y

#Создаем файл конфигурации для python

sudo cat <<EOF > /etc/pip.conf
[global]
index =

https://<login_fpa>:<password_fpa>@server/repository/pypi-
group/pypi
index-url = https://
<login_fpa>:<password_fpa>@@server/repository/pypi-group/simple
trusted-host = server
EOF

<login_fpa>:<password_fpa>-логин и пароль к ФПА, запрошенные в п
```

<login\_fpa>:<password\_fpa>- логин и пароль к ФПА, запрошенные в п

<u>3.3.</u>

```
#Устанавливаем пакеты patroni
```

```
pip3 install --upgrade pip
export PATH="/opt/pgpro/std-16/bin/:$PATH"
pip3 install psycopg2
pip3 install patroni[etcd]==3.0.2
pip3 install psycopg2-binary
```

#Удаляем оригинальный инстанс СУБД

sudo rm -fr /var/lib/pgpro/std-16/data/\*

#Добавляем английскую локаль

```
sed -i "s/# en_US.UTF-8/en_US.UTF-8/" /etc/locale.gen
locale-gen en_US.UTF-8
```

3. Создаем каталоги для хранения БД:

```
sudo mkdir -p /data/patroni
sudo chmod 700 /data/patroni
sudo chown -R postgres:postgres /data
```

4. Создаем юнит файл сервиса patroni по шаблону (см. ниже) sudo cat << EOF > /etc/systemd/system/patroni.service

Шаблон:

[Unit]





```
Description=Runners to orchestrate a high-availability
PostgreSQL
   After=syslog.target network.target

[Service]
   Type=simple
    User=postgres
   Group=postgres
   ExecStart=/usr/local/bin/patroni /etc/patroni.yaml
   KillMode=process
   TimeoutSec=30
   Restart=no

[Install]
   WantedBy=multi-user.target\
EOF
```

## 5.2.5. Настройка Patroni

Для настройки Patroni необходимо подключиться по ssh на каждый узел кластера БД, выделенный для установки СУБД и выполнить следующие команды:

1. Создаем настроенный файл сервиса patroni после чего корректируем переменные согласно комментариям:

```
sudo cat << EOF > /etc/patroni.yaml
scope: pgsql_server # должно быть одинаковым на всех нодах
namespace: /cluster_server/ # должно быть одинаковым на всех
нодах
name: postgres3 # должно быть разным на всех нодах
restapi:
    listen: ip3:port # адрес той ноды, в которой находится
этот файл
    connect_address: ip3:port # адрес той ноды, в которой
находится этот файл
etcd3:
    hosts: ip1:port, ip2:port, ip3:port# перечислите здесь
все ваши ноды, в случае если вы устанавливаете etcd на них же
```

username: patroni





```
# this section (bootstrap) will be written into
Etcd:/<namespace>/<scope>/config after initializing new cluster
     # and all other cluster members will use it as a `global
configuration`
     bootstrap:
         dcs:
             ttl: 100
             loop wait: 10
             retry timeout: 10
             maximum lag on failover: 1048576
             postgresgl:
                 use pg rewind: true
                 use slots: true
                 parameters:
                         wal level: replica
                         hot standby: "on"
                         wal keep segments: 512
                         max wal senders: 5
                         max replication slots: 5
                         checkpoint timeout: 30
         initdb:
         - encoding: UTF8
         - data-checksums
         - locale: en US.UTF8
         # init pg hba.conf должен содержать адреса BCEX машин,
используемых в кластере
         pg hba:
         - host replication postgres ::1/128 md5
         - host replication postgres 127.0.0.1/8 md5
         - host replication postgres ip1/00 md5
         - host replication postgres ip2/00 md5
         - host replication postgres ip3/00 md5
         - host all all 0.0.0.0/0 md5
         users:
             admin:
                 options:
                     - createrole
                     - createdb
     postgresql:
         listen: ip1:port # адрес той ноды, в которой находится
этот файл
```





```
connect address: ip1:port # адрес той ноды, в которой
находится этот файл
         data dir: /data/patroni # эту директорию создаст скрипт,
описанный выше и установит нужные права
         bin dir: /opt/pgpro/std-16/bin # укажите путь до вашей
директории с postgresql
         pgpass: /tmp/pgpass
         authentication:
             replication:
                 username: name
                 password: *** #придумать пароль
             superuser:
                 username: name
                 password: *** #придумать пароль
         create replica methods:
             basebackup:
                 checkpoint: "fast"
         parameters:
             unix socket directories: "."
     tags:
         nofailover: false
         noloadbalance: false
         clonefrom: false
         nosync: false
    EOF
```

- 2. Используя команду nano /etc/patroni.yaml отредактируем файл конфигурации согласно комментариям.
- 3. Запускаем сервис Patroni командой:

```
systemctl start patroni
```

4. Проверяем работу сервиса используя команду:

```
patronictl -c /etc/patroni.yaml list
```

5. Ожидаемый результат после запуска сервиса на всех узлах кластера:

```
+ Cluster: server (7099461315590300498) --+---+

| Member | Host | Role | State | TL | Lag in MB |

+-----+

| postgres2 | ip | Replica | running | 13 | 0 |

| postgres3 | ip | Replica | running | 13 | 0 |

| postgres4 | ip | Leader | running | 13 |
```



+----+

#### 5.2.6. Настройка СУБД

Для настройки СУБД необходимо создать учетные записи и базы данных для сервисов Системы. Для этого необходимо:

Выполнить команды в соответствии с шаблоном (см. ниже).

Таблица 6 содержит описание параметров, указанных в шаблоне.

Таблица 6 – Параметры конфигурации БД

| Переменные | Пример      | Комментарии                             |  |
|------------|-------------|-----------------------------------------|--|
| \$PG_PSWD  | password    | Пароль привилегированной учетной записи |  |
| \$FO_FSWD  |             | PostgreSQL                              |  |
| \$DB_NAME  | server-db   | Имя БД                                  |  |
| \$DB_USER  | Server_user | УЗ для доступа к БД                     |  |
| \$DB_PASS  | password    | Пароль для УЗ \$DB_USER                 |  |
| \$MAIN_DB  | ip          | Общий IP адрес серверов СУБД            |  |

#Переключиться в консоль привилегированного пользователя

Шаблон:

```
SU postgres
#Войти в консоль СУВД
psql
#Изменить пароль входа в СУБД для пользователя postgres
ALTER USER postgres WITH PASSWORD '$PG_PSWD';
#Создать УЗ для БД
CREATE USER "$DB_USER" WITH PASSWORD '$DB_PASS' LOGIN;
#Создать основную БД
CREATE DATABASE "$DB_NAME";
#Предоставить права к БД для УЗ
GRANT ALL ON DATABASE "$DB_NAME" TO "$DB_USER" WITH GRANT
OPTION;
```

```
DN;
#Выйти из консоли СУБД

\q
#Выйти из консоли пользователя postgres
exit
Пример:
su postgres
psql
ALTER USER name WITH PASSWORD '*****';
CREATE USER "server user" WITH PASSWORD '*****' LOGIN;
```

CREATE DATABASE "server-db";





GRANT ALL ON DATABASE "server\_user" TO "server-db" WITH GRANT OPTION;

\q
Exit

## 5.2.7. Настройка резервного копирования СУБД

Для создания резервных копий баз необходимо настроить сохранения резервных копий и логов транзакций в сетевой каталог. Хранение резервных копий рекомендуется на сетевом каталоге. Для облегченного доступа к резервным копиям рекомендуется создать сетевую папку на сервере под управлением любой версии Windows, а также создать учетную запись и предоставить ей права на запись как в файловой системе, так и на уровне сетевого доступа. Для настройки резервного копирования кластера СУБД Postgres на сетевой диск доступный по протоколу SMB необходимо подключиться к консоли узла через ssh и выполнить следующие действия:

1. Произвести установку cifs-utils:

```
sudo apt update
sudo apt install -y cifs-utils
```

2. Создать файл /root/.smbclient с параметрами доступа к сетевому каталогу Windows:

```
sudo nano /root/.smbclient
Заполнить файл, указав логин, пароль, домен:
username=<логин>
password=<пароль>
domain=<домен: например, domain>
```

3. Создать каталог на сервере Linux, в который будет монтироваться сетевой каталог Windows:

```
sudo mkdir /srv/backup
```

4. Настроить автоматическое монтирование сетевого диска. Для этого необходимо отредактировать файл /etc/fstab, командой sudo nano

```
/etc/fstab, и добавить в данный файл строку:
```

- //winserver/Share/ - путь к сетевому каталогу Windows, заменить на нужный путь, при этом меняем «\» на «/»);





- /srv/backup точка (каталог) монтирования на сервере Linux, созданный на шаге 3 текущего раздела;
- /root/.smbclient полный путь файла с параметрами доступа к сетевому каталогу Windows, созданному на шаге 2 текущего раздела.

**Внимание!** Если в пути каталога встречается «пробел» необходимо указывать его через запись «\040».

- 5. Запустить процесс монтирования каталогов в соответствии с настройками, указанными в файле /etc/fstab: sudo mount -a
- 6. Создать директории для хранения резервных копий СУБД. sudo mkdir /srv/backup/postgres
- 7. Настроить ежедневное создание полной копии СУБД. Для этого на сервере СУБД, используя команду sudo -u postgres crontab -e добавляем в cron строку:
- 00 22 \* \* \* PGPASSWORD="\$REPLICA\_PSWD" pg\_basebackup -h MYIP -U replication -F t -D /srv/backup/postgres/\$(date +\%Y\%m\%d) -X stream -z -p port

MYIP заменить на IP сервера.

\$REPLICA\_PSWD - пароль пользователя, от которого будет производиться бэкап(replication)

В результате каждый день в 22-00 будет создаваться, сжатая архиватором gzip, полная архивная копия СУБД.





# 6. ПЕРЕДАЧА ДАННЫХ ГРУППЕ КТО

После выполнения установки группе КТО необходимо передать:

- 1. ІР адреса и имена ВМ Системы;
- 2. Пароли и УЗ для подключения к БД;
- 3. Пароли и УЗ для подключения к серверам Системы.

# 7. ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

| №<br>п/п | Автор                                       | Редакция  | Дата       | Описание изменения                                                                                             |
|----------|---------------------------------------------|-----------|------------|----------------------------------------------------------------------------------------------------------------|
| 1        | АО «НТЦ ЕЭС<br>Информационные<br>комплексы» | 1.0       | 05.09.2024 | Первая версия инструкции по установке и настройке.                                                             |
| 2        | АО «НТЦ ЕЭС<br>Информационные<br>комплексы» | 1.2.0     | 28.10.2024 | Вторая версия инструкции по установке и настройке.                                                             |
| 3        | АО «НТЦ ЕЭС Информационные комплексы»       | 1.2.1     | 13.11.2024 | Третья версия инструкции по установке и настройке. Изменено описание переменных .env файла                     |
| 4        | АО «НТЦ ЕЭС Информационные комплексы»       | 1.2.5     | 17.12.2024 | Четвертая версия инструкции по<br>установке и настройке. Редакторские<br>правки .env файла                     |
| 5        | АО «НТЦ ЕЭС Информационные комплексы»       | 1.2.6     | 06.02.2025 | Пятая версия инструкции по установке и настройке. Добавлены описания ЕСМ в .env файл                           |
| 6        | АО «НТЦ ЕЭС Информационные комплексы»       | 1.2.6.HF2 | 17.02.2025 | Добавлены таймаут подключения nginx.<br>Добавлено создание загрузочного unit файла<br>для etcd                 |
| 7        | АО «НТЦ ЕЭС Информационные комплексы»       | 1.2.6.HF4 | 21.03.2025 | Добавлен параметр максимальной продолжительности сессии с БД, внесены изменения в образец конфигурации patroni |
|          |                                             |           |            |                                                                                                                |