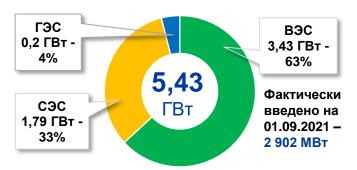
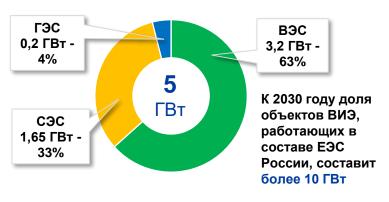
Ежегодная профессиональная конференция «Новая Россия – новая энергетика. Генерация будущего» 20.09.2021, г. Москва

Приоритетные направления развития в ЕЭС


Федор Юрьевич Опадчий Председатель Правления АО «СО ЕЭС»

800



СЭС, ВЭС в ЕЭС России: объемы и размещение

Программа поддержки ДПМ ВИЭ-1 (2014-2024 годы)

Программа поддержки ДПМ ВИЭ-2 (2025-2030 годы)

Фактические и прогнозируемые вводы объектов ВИЭ ДПМ ВИЭ-1

400

200

Распределение ВИЭ по ОЭС на 31.12.2024

600

■ Фактические объемы

■ Прогнозируемые объемы

ввода ВИЭ, МВт

ввода ВИЭ, МВт

na 31.12.2024			
оэс	Руст ВИЭ 2024, МВт	Доля от ДПМ ВИЭ 1	ВИЭ/ ТЭС
Урала	760	14,0 %	1,7 %
Средней Волги	498	9,2 %	3,3 %
Юга	3 497	64,4 %	27,9 %
Северо- Запада	275	5,1 %	3,1 %
Центра	0	0,0 %	0,0 %
Сибири	400	7,4 %	1,6 %
Итого	5.430	100 0 %	3 0 %

СЭС, ВЭС – международный опыт интеграции

Первый этап* выработка до 3 %

Мощности ВИЭ не оказывают влияния на систему. Отклонения СЭС и ВЭС незаметны на фоне иных отклонений (флуктуации потребления, аварийность сетевого и генерирующего оборудования). Изменений основных рыночных механизмов и технологий управления не требуется.

Задачи, требующие решения – разработка технических требований к объектам ВИЭ и требований по их присоединению к энергосистеме

Второй этап выработка 3–13 %

Влияние ВИЭ становится заметным. Регулирующие электростанции в дополнение к компенсации традиционных для энергосистемы отклонений должны эффективно уравновешивать изменения нагрузки ВИЭ.

Задачи, требующие решения – изменение процедур управления и рыночных механизмов, создание системы прогнозирования мощности ВИЭ

Третий этап выработка 13–25 %

Влияние ВИЭ ощущается как с точки зрения общей работы системы, так и с точки зрения режимов работы каждой из электростанций.

Задачи, требующие решения – повышение «гибкости» энергосистемы за счет сетевого строительства и/или привлечения дополнительных ресурсов регулирования, качество прогнозов нагрузки ВИЭ становится принципиально важным для эффективной работы системы

Четвертый этап выработка более 25 %

ВИЭ становится одним из основных видов генерации в энергосистеме.

Требуется решение принципиально новых задач. Увеличение доли асинхронизированой генерации требует создания технологий обеспечения стабильности и поддержания синтетической инерции, значительные объемы ВИЭ у конечных потребителей требуют создание систем регулирования напряжения и устранение перегрузок в распределительных сетях

^{*} по данным Statistical Review of World Energy2021 | 70th edition

^{*}деление на этапы дано на основании результатов исследований Международного энергетического агентства

Интеграция СЭС, ВЭС в ЕЭС России

Реализованные инструменты в рамках ДПМ ВИЭ-1

Регламентами ОРЭМ определен порядок учета ВИЭ в процедурах ВСВГО:

- Минимально обеспеченной выработки СЭС и ВЭС
- Потенциально возможной выработки ВЭС

При управлении электроэнергетическим режимом применяются ранжированные таблицы на ограничение (отключение) объектов ВИЭ.

Реализуются пилотные проекты прогнозирования СЭС на территориях энергосистем, входящих в ОЭС Юга.

На официальном сайте АО «СО ЕЭС» ежемесячно публикуется отчет о функционировании ВИЭ, включая информацию о фактических ограничениях выдачи

Установленные НПА инструменты для ДПМ ВИЭ-2

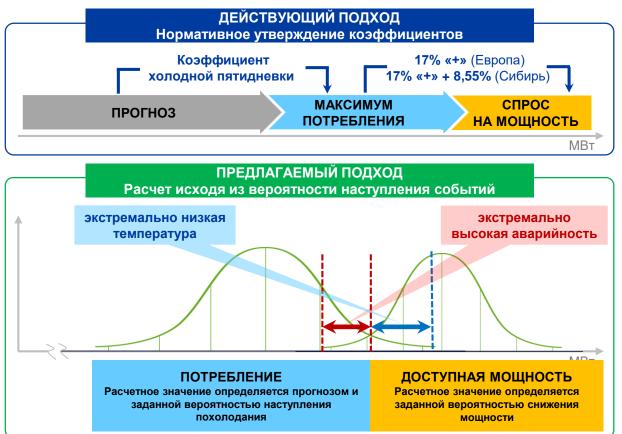
Постановлением Правительства РФ от 05.03.2021 № 328 на объемы ДПМ ВИЭ-2:

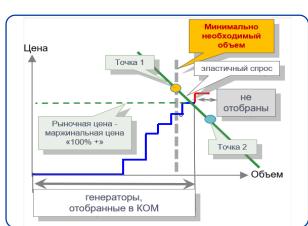
- Распространены **требования по поддержанию генерирующего оборудования в состоянии готовности к выработке электроэнергии**, аналогичные применяемым к другим типам генерации
- Закреплены обязательства по определению места размещения объектов ВИЭ – не позднее, чем за 2 года до начала работы

Предлагаемые изменения

Установление **приоритетов разгрузки** СЭС и ВЭС в процедурах краткосрочного планирования:

- между объектами ВИЭ в первую очередь разгружаются последние построенные
- по отношению к другим объектам генерации ВИЭ разгружаются в последнюю очередь по отношению к объектам, загруженным по экономическим критериям, но до объектов, загрузка которых определена требованиями безопасности (АЭС, ГЭС, ТЭЦ)

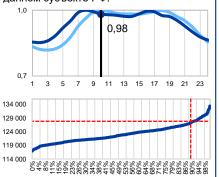



Интеграция ВИЭ. Реализуемые проекты

- **1** Дистанционное управление объектами ВИЭ из ДЦ АО «СО ЕЭС» (Хевел, Фортум, группа РОСНАНО, Enel, группа Росатом)
 - Реализованы проекты на 16 электростанциях ВИЭ
- 2 Подключение ВИЭ к ЦС АРЧМ с целью снижения объема ограничений выдачи мощности ВЭС при «запирании» сечений
 - Реализуется проект в Мурманской области (Enel)
 - Прорабатывается возможность реализации проектов в ОЭС Юга
- Рабочая группа по реализации пилотных проектов интеграции в ЕЭС систем накопления электрической энергии на базе солнечных электростанций (с Авелар Солар Технолоджи)
 - Разработан проект технических и функциональных требований к работе СНЭЭ на базе СЭС в ЕЭС России при выделении СЭС со СНЭЭ и прилегающим районом на изолированную работу
 - Проведены натурные испытания регулированию активной и реактивной мощности
 - Запланированы испытания по регулированию частоты с использованием СНЭЭ в изолированном районе

Новый подход к спросу и предложению в КОМ

Определение параметров спроса и предложения на основании <u>вероятностных</u> характеристик:

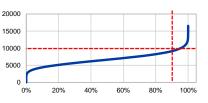

- Распределение температур по субъектам
 РФ в зимний период
- Фактическая готовность генерирующего оборудования к работе
- Участие СЭС/ВЭС в покрытии пика потребления
- Фактический режим работы ГЭС в зимний период

Новый подход к спросу и предложению в КОМ

Прогноз потребления

- Сохраняется порядок определения прогноза потребления по субъектам РФ в СиПР расчет на нормированную (среднюю за 10 лет) температуру, при которой были зарегистрированы зимние максимумы нагрузок в данном субъекте РФ.
- Коэффициент регионального совмещения на основании профиля потребления субъекта РФ и ЦЗ в целом в ОЗП 3 лет рассчитывается доля потребления региона в час максимума ЦЗ относительно собственного максимума (учет неодновременности прохождения пика потребления)
- Коэффициент температурного совмещения на основании статистики температур регионов за каждые сутки зимних месяцев 20 лет рассчитывается вероятностная характеристика увеличения потребления при совмещении похолодания в различных субъектах РФ

Учет предложения в КОМ • Сохраняется действующий порядок учета заявляемой участниками полной располагаемой мощности ТЭС/АЭС ■ Мошность ГЭС – на основании статистики максимальной суммарной нагрузки всех ГЭС ЦЗ для каждой недели 40% зимних месяцев 10 лет рассчитывается вероятностная характеристика доступной 20% мощности ГЭС ЦЗ 0% 9500 11500 ■ Мошность СЭС/ВЭС — на основании статистики суммарной выработки СЭС/ВЭС 80% по ЦЗ в утренние/ вечерние часы максимума ЦЗ в каждые сутки ОЗП и 60% законтрактованных объемов СЭС/ВЭС на 40% год КОМ рассчитывается вероятностная

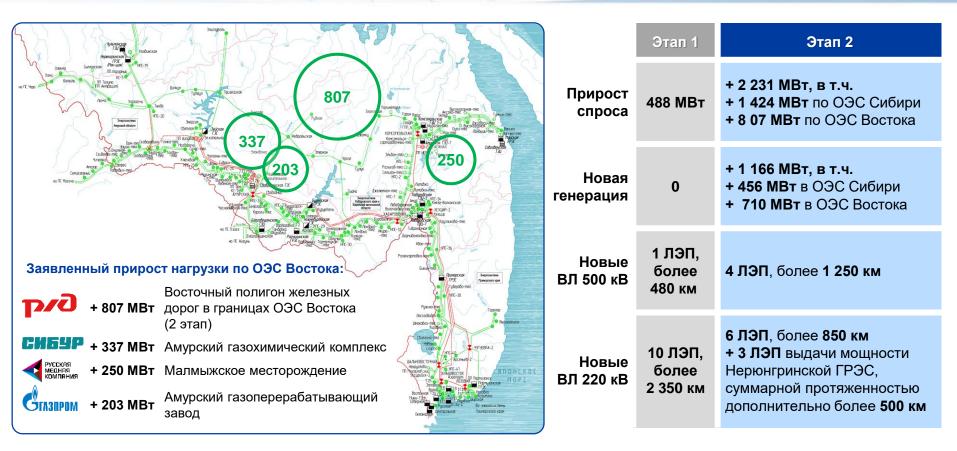

характеристика доступной мощности

C9C/B9C

20%

0%

■ Резерв для покрытия снижения мощности с учетом вероятности совмещения ремонтов - на основании статистики снижений мошности АЭС и неплановых (аварийных) снижений мошности ТЭС за 10 лет рассчитывается вероятностная характеристика (методом Монте-Карло) ремонтного снижения мощности


- Стратегический резерв возможность наступления непредвиденных событий (3 %)
- Резерв, определяемый точностью прогноза темпов социально-экономического развития, соответствующий потенциально достижимой точности прогноза потребления на 6-летнем периоде (3 %)

Резервы

Восточный полигон

Развитие ОЭС Сибири, Востока

Развитие системообразующей сети 500 кВ и 220 кВ внутри ОЭС Востока и в приграничных с ОЭС Сибири энергорайонах ПС 220 кВ Пеледуй Вводы в рамках реализации технических решений по второму этапу Восточного полигона Вводы, необходимые для обеспечения параллельной работы ОЭС Сибири – ОЭС Востока

Технологическое развитие

Ввод новой и модернизация действующей генерации:

- 1 467 МВт модернизация Приморской ГРЭС
- 456 МВт Бодайбинский район Иркутской области
- 430 МВт Нерюнгринская ГРЭС
- 260 МВт поселок Советская Гавань
- 280 МВт расширение Партизанской ГРЭС

Экспертная оценка показывает возможность объединения на параллельную работу энергосистем ОЭС Сибири и ОЭС Востока при сооружении в дополнение к планируемым:

- ВЛ 220 кВ Могоча Сковородино (~ 375 км)
- ВЛ 220 кВ и Таксимо Чара (~ 250 км)

Совместно с развитием системы противоаварийного управления это обеспечит перетоки между Востоком и Сибирью +450/-350 МВт

Развитие рыночных отношений

Генерация	Потребление	
34 ГТП генерации	Более 100 ГТП потребления	
4		
независимых	20	
участника	участников	

Реализуется процесс унификации технологий планирования на оптовом рынке:

- Выбор состава включенного генерирующего оборудования (ВСВГО)
- Рынок на сутки вперед
- Балансирующий рынок (БР)

Агрегированное управление спросом

07.2019 03.2021 01.2022 01.2023 Старт пилотного проекта Продление пилотного проекта Внедрение целевой модели Продление пилотного проекта Проверка работоспособности Отработка критериев Отработка мер повышения задействования в РСВ исполнимости договоров, модели Принятие НПА целевой модели. Отработка взаимодействия Разработка НПА целевой модели Изменения в деловые процессы ОРЭМ. Агрегатор – участник.

Внедрение в апреле 2021 г. новых критериев задействования ресурсов управления спросом в РСВ позволило вывести на новый уровень величину получаемого эффекта.

В рамках продления «пилота» на 2022 год планируется отработать механизмы, стимулирующие к повышению исполняемости договоров оказания услуг по управлению спросом, в том числе: квалификационные испытания, повышенная финансовая ответственность за неисполнение, возможность частичного исполнения, введение минимального порога готовности, установление требований к минимальному объему снижения потребления.

Целевая модель управления спросом – учет ресурсов управления спросом на всех стадиях планирования и во всех секторах рынка – КОМ, ВСВГО, РСВ, БР.

Планируется реализовать селективное использование ресурсов управления спросом – в рамках события управления спросом будут разгружаться только те потребители, разгрузка которых приводит к оптимальному экономическому результату (а не все одновременно, как на этапе пилотного проекта. 5 событий рассчитывается индивидуально для каждого объекта). Неодновременное использование ресурса позволит увеличить, при необходимости, количество событий управления спросом.

Прорабатывается вопрос оценки и учета влияния управления спросом на сокращение выбросов СО2.

Изменения в деловых процессах **ОРЭМ** в связи с введением целевой модели **DR**

До 1 января 2023 года требуется внести изменения в деловые процессы OPЭМ – разработать изменения в регламенты рынка и доработать информационные системы инфраструктурных организаций:

- Разработка типовой формы договоров оказания услуг по управлению изменением потребления
- Организация договорных кампаний по заключению договоров между агрегаторами и полным составом покупателей ОРЭМ
- Организация регистрации и допуска новых видов субъектов оптового рынка, участвующих с новым видом объекта – объектом управления спросом, не описываемого в традиционном формате ГТП
- Доработка системы расчетов между участниками оптового рынка с учетом появления нового вида участников и нового вида договоров на оптовом рынке
- Разработка изменений в механизм трансляции нерегулируемых цен оптового рынка на розничный рынок электроэнергии в части включения стоимости услуг по управлению изменением потребления
- Разработка и внесение изменений в деловые процессы КОМ/ ВСВГО/ РСВ/ БР в части учета нового ресурса на стороне потребления, включая информационный обмен, математические модели учета ресурсов управления спросом

Евразийский экономический союз — международная организация региональной экономической интеграции, учрежденная Договором о Евразийском экономическом союзе

Государства – члены ЕАЭС:

- Республика Армения
- Республика Беларусь
- Республика Казахстан
- Кыргызская Республика
- Российская Федерация

Острые дискуссии при обсуждении проектов НПА ОЭР обусловлены:

- Отсутствием баланса интересов все партнеры рассматривают рынок только как возможность продать электроэнергию
- Различными подходами к реализации принципа о ненанесении экономического ущерба участникам внутренних рынков

Позиция СО по ряду дискуссионных вопросов:

- Доступная для торговли на ОЭР пропускная способность внутренней сети должна определяться на национальном уровне
- Поставка с Общего рынка на российский рынок не должна иметь приоритета по отношению к поставкам российских поставщиков
- Необходимо наличие механизмов, обеспечивающих соблюдение странами плановых графиков перетоков по межгосударственным сечениям, в т.ч. формируемых по результатам торгов на ОРЭ

Основополагающие документы

Протокол об общем электроэнергетическом рынке EAЭC (приложение № 21 к Договору о EAЭC от 29.05.2014 в ред. от 29.05.2019) определяет:

- Базовые принципы формирования, функционирования и развития ОЭР
- Принципы и структуру управления ОЭР, полномочия органов ЕАЭС (Высшего совета, Межправительственного совета и Совета ЕЭК)
- Перечень ключевых нормативных документов ОЭР

Сроки принятия актов ОЭР установлены Высшим советом ЕАЭС:

- Ключевые акты для запуска ОЭР с 01.01.2025 должны быть приняты в период с 01.07.2022 до 01.07.2023
- Стандартная форма договора о присоединении к торговой системе ОЭР подлежит утверждению до 01.01.2024

Основные документы общего рынка:

- Правила определения и распределения пропускной способности межгосударственных сечений ОЭР
- Правила взаимной торговли
- Правила информационного обмена
- Правила доступа к услугам по межгосударственной передаче электрической энергии (мощности)

50,000

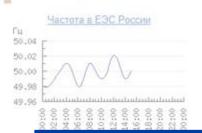
О компании:

Деятельность

Филиалы и представительства

Новости

Контакты и реквизиты


ЕЭС России

www.so-ups.ru

Оперативная информация о работе ЕЭС России

Индикаторы ЕЭС

Новости Системного оператора

Росста Спасибо за внимание

системы стандартизации в отрасли

Руководитель Федерального элентотва по техническому регулированию и метрологии (Росстандарт) Антон Шалаев направил благодарственное письмо в адрес Первого заместителя Председателя Прадления АО «СО ЕЭС», председателя технического комитета по стандартизации ТК 016 «Злектрознергетика» Сергея Павлушко

емпература в ЕЭС России

Федор Юрьевич Опадчий

Председатель Правления АО «СО ЕЭС»

САЙТ КОНКУРЕНТНОГО ОТЕОРА МОЩНОСТИ ОТЕОР ПРОЕКТОВ МОДЕРНИЗАЦИИ)

САЙТ КОНКУРЕНТНОГО ОТБОРА МОЩНОСТИ

САЙТ ОПТОВОГО РЫНКА ЗПЕКТРОЗНЕРГИИ

TI MINO DELLO CENTRO

ТЕХНОЛОГИЯ ОТОМИЗИВАЕОНЕЦ ВИНЕЛЕЗЕТОП