

Приоритетные направления развития в ЕЭС

Опадчий Федор Юрьевич Председатель Правления АО «СО ЕЭС» ялта 12.10.2021

Динамика электропотребления в субъектах Российской Федерации в сравнении с 2020 годом (фактическая)

Динамика электропотребления в субъектах Российской Федерации в сравнении с 2020 годом (при сопоставимых температурных условиях)*

Динамика электропотребления по Федеральным округам и видам экономической деятельности

Федеральный округ	Центральный	Приволжский	Уральский	Северо-Западный	Южный	Северо-Кавказский	Сибирский	Дальневосточный
Динамика к 2020 *	+5,5 %	+4,2 %	+2,4 %	+3,9 %	+6,6 %	+7,3 %	+2,7 %	+2,2 %
Динамика к 2019 *	+4,2 %	-0,7 %	-2,5 %	+1,6 %	+4,9 %	+7,3 %	+2,3 %	+5,5 %

Основные вводы генерирующих мощностей в 2021 году

2 005,581 MBT

Генерирующих мощностей введено в ЕЭС России, в том числе

7 новых СЭС и ВЭС (**580,49** МВт) *

По итогам 2021 года ожидается ввод 3 349 МВт, в том числе:

ТЭС АЭС		вэс	сэс	
949 MBT	1 188 MBT	1 009 MBT	203 MBT	

1 200,2 MBT

160
MBT

160
MBT

100
MBT

Наиболее крупные фактические вводы:

1 188,151 MBT

Ленинградская АЭС (блок 6)

160 MBT

Свободненская ТЭС (ТГ 1, 2)

120 MBT

Марченковская ВЭС

Бондаревская ВЭС

120 MBT

* По состоянию на 01.10.2021 г.

Основные вводы электросетевого оборудования в 2021 году

Фактические вводы

Наименование объекта	Энергосистема	Эффект
ПС 330 кВ Барсуки с двумя ВЛ 330 кВ Невинномысск – Барсуки	Ставропольского края	СВМ Кочубеевской ВЭС
ВЛ 220 кВ Спасск – НПС-40, ВЛ 220 кВ Дальневосточная – НПС-40, ВЛ 220 кВ Арсеньев-2 – НПС-41, ПС 220 кВ Суходол с заходами ВЛ 220 кВ Владивосток – Зелёный угол	Приморского края	Повышение надежности электроснабжения потребителей Приморского края ТП морской порт «Суходол»
ПС 220 кВ Строительная с заходами ВЛ 220 кВ Свободненская ТЭС – Новокиевка	Амурской области	ТП Амурского газохимического комбината (строй пл.)
ПС 220 кВ Налдинская с заходами ВЛ 220 кВ Нерюнгринская ГРЭС – НПС- 18 № 2	Республики Саха (Якутия)	ТП АО «ГОК «Инаглинский» ТП ГТС «Сила Сибири»
ВЛ 330 кВ Борей – Лоухи № 1 и 2, ВЛ 330 кВ Борей – Каменный бор № 2	Республики Карелия	Увеличение на 210 МВт пропускной способности Кола-Карельского транзита
КВЛ 330 кВ Копорская – Ленинградская АЭС, 4 АТ 750 кВ Ленинградская АЭС	СПб и ЛО	Обеспечение СВМ Ленинградской АЭС
ВЛ 220 кВ Означенное – Степная I, II цепь, ВЛ 220 ВЛ Степная – Абаза	Республики Хакасия	
ВЛ 220 кВ Камала-1 – Саянская тяговая №2	Красноярского края	Обеспечение возможности ТП новых
ВЛ 220 кВ Озёрная – ТАЗ № 1, 2, 3, 4, ПС 220 кВ Столбово с отпаечными ВЛ 220 кВ	Иркутской области	нагрузок РЖД

Ожидаемые вводы

Наименование объекта	Энергосистема	Эффект	
ПС 220 кВ КС-1 с заходами ВЛ 220 кВ НПС-12 – НПС-13	Республики Саха (Якутия)	ТП АО «ГОК «Инаглинский» ТП ГТС «Сила Сибири»	
ВЛ 220 кВ Тында – Лопча – Хани – Чара	Амурской области	ТП ООО «Удоканская медь»	
ПС 220 кВ Находка с заходами ВЛ 220 кВ Лозовая – Находка и ВЛ 220 кВ Находка – Широкая	Приморского края	ТП потребителей, в том числе ОАО «РЖД»	
ВЛ 330 кВ Каменный Бор – Кондопога, ВЛ 330 кВ Борей – Каменный бор № 1, ВЛ 330 кВ Петрозаводск – Тихвин- Литейный	Республики Карелия	Увеличение на 210 МВт пропускной способности Кола- Карельского транзита	
Организация заходов ВЛ 220 кВ Саратовская ГЭС – Кубра с отпайкой на ПС Возрождение с образованием ВЛ 220 кВ Саратовская ГЭС – Возрождение и ВЛ 220 кВ Возрождение – Кубра	Саратовской области	Повышение надежности работы ВЛ 220 кВ, подверженных гололедообразованию	
Вторая цепь транзита 220 кВ Минусинская опорная – Саянская тяговая	Красноярского края	Обеспечение	
Вторая цепь транзита 220 кВ Междуреченская – Степная	Республики Хакасия, Кемеровской области	возможности ТП новых нагрузок РЖД	

1.6 %

3,8 %

2,0 %

СЭС, ВЭС в ЕЭС России: объемы и размещение

Пермский край

Республика Алтай Республика Бурятия

Саратовская область Забайкальский край

Ульяновская область

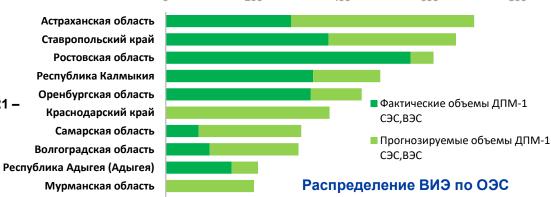
Омская область


Курганская область

Республика Дагестан

Республика Хакасия

Республика Башкортостан


Программа поддержки ДПМ ВИЭ-1 (2014–2024 годы)

Программа поддержки ДПМ ВИЭ-2 (2025–2030 годы)

Фактические и прогнозируемые вводы СЭС,ВЭС в рамках ДПМ ВИЭ-1 200

Сибири

Итого

300

2 882

на 31.12.2024

оэс	Руст <i>[</i> СЭС,		Доля от ДПМ-1	ДПМ-1 СЭС, ВЭС/ТЭС	
030	на 01.10.21	на 01.12.24	СЭС,ВЭС	на 01.10.21	на 01.12.24
Урала	414	760	14,6 %	0,9%	1,7 %
Средней Волги	230	499	9,6 %	1,5 %	3,3 %
Юга	1 937	3 358	64,4 %	15,6 %	26,8 %
Северо- Запада	0	201	3,9 %	0,0 %	2,3 %
Центра	0	0	0,0 %	0,0 %	0,0 %

100,0 %

400

5 217

СЭС, ВЭС – международный опыт интеграции

Первый этап* выработка до 3 %

Мощности ВИЭ не оказывают влияния на систему. Отклонения СЭС и ВЭС незаметны на фоне иных отклонений (флуктуации потребления, аварийность сетевого и генерирующего оборудования). Изменений основных рыночных механизмов и технологий управления не требуется.

Задачи, требующие решения – разработка технических требований к объектам ВИЭ и требований по их присоединению к энергосистеме

Второй этап выработка 3–13 %

Влияние ВИЭ становится заметным. Регулирующие электростанции в дополнение к компенсации традиционных для энергосистемы отклонений должны эффективно уравновешивать изменения нагрузки ВИЭ.

Задачи, требующие решения – изменение процедур управления и рыночных механизмов, создание системы прогнозирования мощности ВИЭ

Третий этап выработка 13–25 %

Влияние ВИЭ ощущается как с точки зрения общей работы системы, так и с точки зрения режимов работы каждой из электростанций.

Задачи, требующие решения – повышение «гибкости» энергосистемы за счет сетевого строительства и/или привлечения дополнительных ресурсов регулирования, качество прогнозов нагрузки ВИЭ становится принципиально важным для эффективной работы системы

Четвертый этап выработка более 25 %

ВИЭ становится одним из основных видов генерации в энергосистеме.

Требуется решение принципиально новых задач. Увеличение доли асинхронизированой генерации требует создания технологий обеспечения стабильности и поддержания синтетической инерции, значительные объемы ВИЭ у конечных потребителей требуют создание систем регулирования напряжения и устранение перегрузок в распределительных сетях

^{*} По данным Statistical Review of World Energy2021 | 70th edition

^{*} Деление на этапы дано на основании результатов исследований Международного энергетического агентства

Реализованные инструменты в рамках ДПМ ВИЭ-1

Регламентами ОРЭМ определен порядок учета ВИЭ в процедурах ВСВГО:

- Минимально обеспеченной выработки СЭС и ВЭС
- Потенциально возможной выработки ВЭС

При управлении электроэнергетическим режимом применяются ранжированные таблицы на ограничение (отключение) объектов ВИЭ.

Реализуются пилотные проекты прогнозирования СЭС на территориях энергосистем, входящих в ОЭС Юга.

публикуется отчет о функционировании ВИЭ, включая информацию о фактических ограничениях выдачи. Максимальное ограничение

На официальном сайте АО «СО ЕЭС» **ежемесячно**

Максимальное ограничение выдачи мощности ВЭС в 2021 г. – 210 МВт, доля снижения выработки в период ограничений в общей выработке ВЭС – 0,529 %

Установленные НПА инструменты для ДПМ ВИЭ-2

Постановлением Правительства РФ от 05.03.2021 № 328 на объемы ДПМ ВИЭ-2:

- Распространены **требования по поддержанию генерирующего оборудования в состоянии готовности к выработке электроэнергии**, аналогичные применяемым к другим типам генерации
- Закреплены обязательства по определению места размещения объектов ВИЭ – не позднее, чем за 2 года до начала работы

Предлагаемые изменения

Установление приоритетов разгрузки СЭС и ВЭС в процедурах краткосрочного планирования:

- между объектами ВИЭ в первую очередь разгружаются последние построенные
- по отношению к другим объектам генерации ВИЭ разгружаются в последнюю очередь по отношению к объектам, загруженным по экономическим критериям, но до объектов, загрузка которых определена требованиями безопасности (АЭС, ГЭС, ТЭЦ)

Агрегированное управление спросом

03.2021 07.2019 01.2022 01.2023 Старт пилотного проекта Продление пилотного проекта Продление пилотного проекта Внедрение целевой модели Проверка работоспособности Отработка критериев Отработка мер повышения задействования в РСВ. исполнимости договоров, модели. Принятие НПА целевой модели. Отработка взаимодействия Разработка НПА целевой модели. Изменения в деловые процессы ОРЭМ. агрегатор – участник.

Внедрение в апреле 2021 г. новых критериев задействования ресурсов управления спросом в РСВ позволило вывести на новый уровень величину получаемого эффекта.

В рамках продления «пилота» на 2022 год планируется отработать механизмы, стимулирующие к повышению исполняемости договоров оказания услуг по управлению спросом, в том числе: квалификационные испытания, повышенная финансовая ответственность за неисполнение, возможность частичного исполнения, введение минимального порога готовности, установление требований к минимальному объему снижения потребления.

Целевая модель управления спросом – учет ресурсов управления спросом на всех стадиях планирования и во всех секторах рынка – КОМ, ВСВГО, РСВ, БР.

Планируется реализовать селективное использование ресурсов управления спросом – в рамках события управления спросом будут разгружаться только те потребители, разгрузка которых приводит к оптимальному экономическому результату (а не все одновременно, как на этапе пилотного проекта. 5 событий рассчитывается индивидуально для каждого объекта). Неодновременное использование ресурса позволит увеличить, при необходимости, количество событий управления спросом.

Прорабатывается вопрос оценки и учета влияния управления спросом на сокращение выбросов СО2.

Совершенствование процессов перспективного планирования в ЕЭС России. Новые функции АО «СО ЕЭС»

Начиная с 01.01.2023 (СиПР на период с 2023 г.)

Обеспечение централизованного проектирования развития энергосистем

Разработка документов по перспективному развитию электроэнергетики:

- генеральная схема размещения объектов электроэнергетики
- схема и программа развития электроэнергетических систем России (включая ЕЭС, тех.изолир. системы, решения по развитию электроэнергетики регионов)
- Определение технических решений по СВМ, СВЭ при реализации особо значимых проектов (поручения Президента, Правительства, Минэнерго, нац. проекты и т.д.), разработка ТЭО по и выводу из эксплуатации ГЭС, АЭС
- Формирование, поддержание **информационных и перспективных расчетных моделей энергосистем. Безвозмездное предоставление** заинтересованным лицам для разработки ТЭО и проектирования **модели энергосистемы в формате CIM**
- Экспертная поддержка Минэнерго России при организации проведения, рассмотрении и оценке результатов НИР по применению в энергосистеме перспективных технологий и инновационных решений

ОДУ в изолированных системах

До 31.12.2023 выполнение функций по проектированию перспективного развития энергосистем в отношении всех изолир. систем

Принятие с 01.01.2024 и выполнение всех функций по оперативнодиспетчерскому управлению в
электроэнергетике в технологически
изолированных энергосистемах
Дальневосточного федерального
округа

Повышение качества планирования развития электроэнергетики, обоснованности и прозрачности технических решений, в т.ч. в субъектах РФ

Равноправный доступ к цифровым информационным и расчетным моделям. Сокращение сроков и снижение издержек на проектирование

Единая техническая политика в ЕЭС России и изолированных системах

Развитие научнотехнической базы и повышение уровня технического развития отрасли

Ключевые изменения в нормативном регулировании перспективного планирования развития ЕЭС

Законопроект «О внесении изменений в Федеральный закон «Об электроэнергетике» в части совершенствования системы перспективного планирования в электроэнергетике»

- 2021-2022 годы разработка и принятие
- 01 января 2023 года вступление в силу

Перспективное планирование развития					
Правительство РФ	Правила разработки и утверждения документов перспективного развития электроэнергетики				
Минэнерго России					
Правительство РФ	Перечень случаев, в которых разработка СВМ, СВЭ, ТЭО по выводу из эксплуатации осуществляется системным оператором				
Правительство РФ	Правила формирования и поддержания в актуальном состоянии информационных и перспективных расчетных моделей энергосистем				
Минэнерго России	Порядок предоставления (раскрытия) информационных и перспективных расчетных моделей				
	Иные нормативные правовые акты				

ОДУ в изолированных системах Положение об особенностях ОДУ осуществления технологически изолированными территориальными электроэнергетическими системами Правила ОДУ в электроэнергетике, утв. ПП РФ от 27.12.2004 № 854 Правительство Основные положения функционирования РΦ хынчингоа рынков электроэнергии, VTB. ПП РФ от 04.05.2012 № 442 Стандарты раскрытия информации ОРЭМ PP3. субъектами утв. ПП РФ от 21.01.2004 № 24 Иные нормативные правовые акты

Частота в ЕЭС, Ги 50,000

Контакты и реквизиты

ЕЭС России

www.so-ups.ru

Оперативная информация о работе ЕЭС России

Индикаторы ЕЭС

Спасибо за внимание

Росстандарт поблагодарил ТК 016 «Электроэнергетика» за развитие системы стандартизации в отрасли

Опадчий Федор Юрьевич

fedor@so-ups.ru Системный оператор и субъекты электроэнергетики Карелии и Мурманской области успец (495) 627-84-03 ексные испыта

