

Перспективы применения технологии СІМ в режимных задачах диспетчерского управления

Патраков Василий Анатольевич

ведущий эксперт Службы электрических режимов АО «СО ЕЭС»

Михайленко Андрей Федорович

начальник Службы электрических режимов АО «СО ЕЭС»

Цифровизация деловых процессов и планы по использованию технологии CIM

Приказ Минэнерго РФ от 20.12.2022 №1340 «Об утверждении правил предоставления информации, необходимой для осуществления оперативно-диспетчерского управления в электроэнергетике»

Приказ Минэнерго РФ от 20.12.2022 №82 «Об утверждении порядка раскрытия цифровых информационных моделей электроэнергетических систем ...»

Передача параметров и характеристик оборудования с использованием технологии СІМ (СІМ-портал)

Раскрытие информации в СІМ формате

С 1 января 2027 предоставление перспективных расчетных моделей в формате соответствующем ГОСТ Р 58651.1

Запланированные к выполнению деловые процессы используемые в режимных задачах с использованием технологии СІМ:

Передача информации по графикам напряжения в контрольных пунктах

Использование данных АСКУЭ (АСТУЭ) в контуре диспетчерского управления Получение, обработка и обмен данными контрольных и внеочередных измерений

Передача информации по графикам напряжения в контрольных пунктах с применением технологии CIM

Разработка и передача графиков напряжения в контрольных пунктах

Документы основания:

- Постановление Правительства РФ от 13.08.2018 №937 «Об утверждении Правил технологического функционирования электроэнергетических систем и о внесении изменений в некоторые акты Правительства Российской Федерации»
- СТО 59012820.27.010.002-2014 «Правила разработки графика напряжения в контрольных пунктах диспетчерского центра ОАО «СО ЕЭС»

Каждый ДЦ, исходя из необходимости обеспечения:

- нормативных коэффициентов запаса статической апериодической устойчивости по активной мощности в контролируемых сечениях;
- нормативных коэффициентов запаса статической устойчивости по напряжению в узлах нагрузки

- определяет КП по напряжению в сети 110 кВ и выше своей О3;
- разрабатывает ГН в КП на календарный месяц и направляет ГН в КП ДЦ в сетевую организацию;
- осуществляет контроль напряжения в КП

Каждая сетевая организация, исходя из необходимости обеспечения:

- нормативных коэффициентов запаса статической устойчивости по напряжению в узлах нагрузки;
- нормативных показателей качества электрической энергии по отклонению напряжения;
- допустимых потерь активной мощности

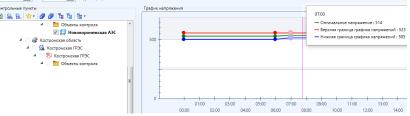
- определяет КП по напряжению в сети 35 110 кВ принадлежащей ей на праве собственности;
- разрабатывает ГН в КП с учетом ГН в КП ДЦ;
- осуществляет контроль напряжения в КП

Использование в контуре диспетчерского управления графиков напряжения в контрольных пунктах

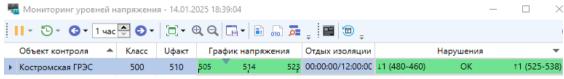
Разработка и хранение ГН в КП выполняется в специализированном ПО в **СІМ формате**:

Контроль и регулирование уровней напряжения в контрольных пунктах в каждом ДЦ осуществляет диспетчер при управлении электроэнергетическим режимом в специализированных комплексах (МУН, MAG Terminal) использованием **технологии СІМ**:

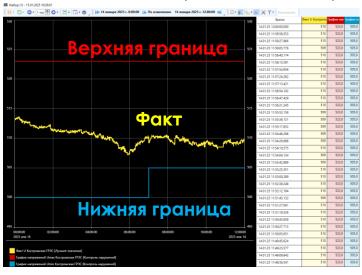
Направление графиков напряжения в контрольных пунктах **субъектам ЭЭ** в табличном формате (Word):

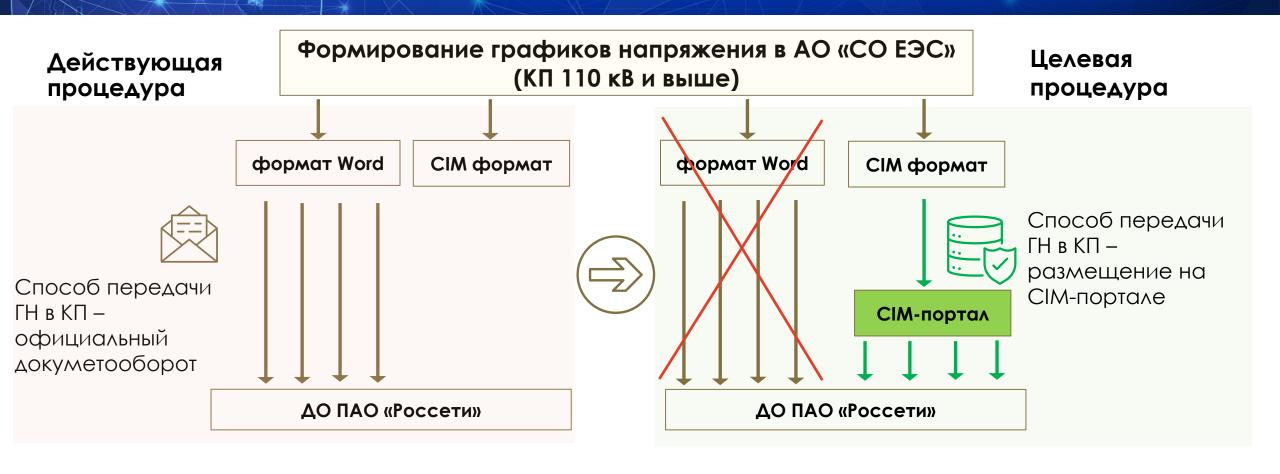

График напряжения в контрольных пунктах на январь 2025 года для рабочих дней

Энергообъект	Класс		Часы суток																							
	напряжения, кВ	Граница	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Костромская ГРЭС	500	Верхний кВ	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523
		Нижний кВ	500	500	500	500	500	500	500	505	505	505	505	505	505	505	505	505	505	505	505	505	505	500	500	500


График напряжения в контрольных пунктах на январь 2025 г. для выходных дней

Энергообъект	Класс		Часы суток																							
	напряжения, кВ	Граница	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Костромская ГРЭС	500	Верхний кВ	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523	523
		Нижний кВ	500	500	500	500	500	500	500	505	505	505	505	505	505	505	505	505	505	505	505	505	505	500	500	500




Приложение МУН (Мониторинг уровней напряжения):

MAG Terminal: специализированные наборы:

Передача графиков напряжения в СІМ формате

Перевод задачи обмена ГН в КП в цифровой формат для повышения уровня интеграции и автоматизации между субъектами обмена

Этапы перехода на обмен графиками напряжения в контрольных пунктах в СІМ формате

Сформирована рабочая группа из представителей АО «СО ЕЭС» и ПАО «Россети»

Утвержден План-график мероприятий, обеспечивающих переход на обмен данными в CIM

Разработано описание целевого процесса передачи, приема и использования в ДО ПАО «Россети» графиков напряжения в контрольных пунктах (далее ГН в КП)

Разработка профиля информационного обмена в части ГН в КП

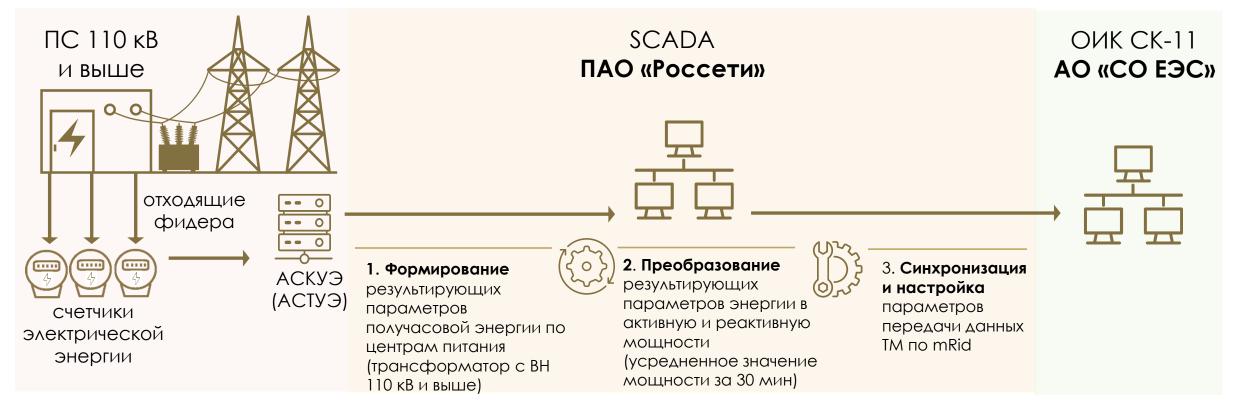
Внесение изменений (при необходимости) в серию **ГОСТ Р 58651** и двусторонние документы в части передачи/приема ГН в КП

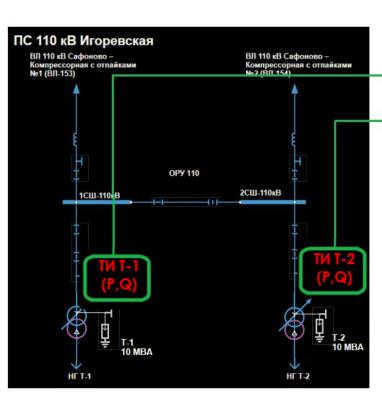
Доработка программного обеспечения:

- в АО «СО ЕЭС» для передачи ГН в КП в СІМ формате на СІМ-портал
- в ДО ПАО «Россети» для создания/приема/передачи/использования ГН в КП в СІМ формате с СІМ-портала

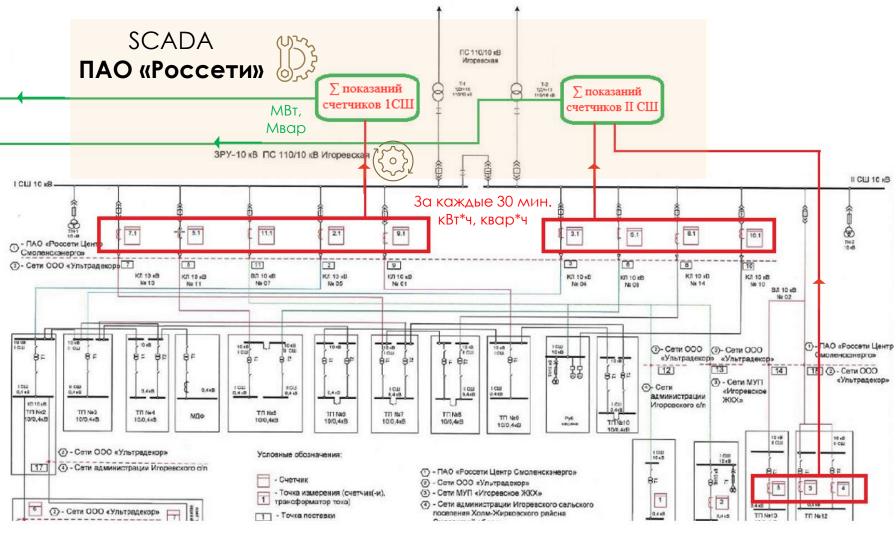
Реализация проекта по приему/передачи ГН в КП в СІМ формате и использование полученных данных в деловых процессах ДО ПАО «Россети» с применением стандартов СІМ

Мероприятия по подготовке к передаче и использованию ГН в КП в СІМ


7


Передача и использование данных АСКУЭ (АСТУЭ) в контуре диспетчерского управления

Передача данных АСКУЭ (АСТУЭ)


Целевая задача - использование дополнительный источника телеметрической информации для повышение уровня наблюдаемости электрической сети в оперативных задачах АО «СО ЕЭС» связанных с оценкой состояния (использование в СМЗУ, ЦСПА) и определения текущего объема нагрузки потребителей, подключенных к устройствам ПА

Различная детализация информационной модели

OMK CK-11 AO «CO EЭC»

Этапы перехода на обмен данными АСКУЭ (АСТУЭ)

Сформирована рабочая группа из представителей АО «СО ЕЭС» и ПАО «Россети»

Утвержден План-график мероприятий, обеспечивающих переход на обмен данными в CIM

Определение способов автоматической передачи данных АСКУЭ(АСТУЭ) с преобразованием параметров получасовой энергии в активную и реактивную мощности

Разработка профиля информационного обмена для передачи данных АСКУЭ (АСТУЭ)

Доработка программного обеспечения для передачи данных АСКУЭ (АСТУЭ) в SCADA ПАО «Россети»

Доработка программного обеспечения в части обработки полученных данных АСКУЭ (АСТУЭ) с их преобразованием в телеметрическую информацию (активная мощность) для передачи в ОИК СК-11 АО «СО ЕЭС».

Реализация проекта по приему/передачи данных АСКУЭ (АСТУЭ) и их использование в оперативном контуре ОИК СК-11 АО «СО ЕЭС»

Мероприятия по подготовке к передаче и использованию данных АСКУЭ (АСТУЭ)

7

Спасибо за внимание!

Патраков Василий Анатольевич

ведущий эксперт Службы электрических режимов АО «СО ЕЭС»

Михайленко Андрей Федорович

начальник Службы электрических режимов АО «СО ЕЭС»